Chat In Sibuea Blog

SENI DAN INSPIRASI


http://reddragondesigns.net/
Hover Effects

HUJAN SALJU

MY FAMILY

Alm.R.SIBUEA (Father)WITH J.br.MARPAUNG (Mother) Anak 1.E.ROHANI T SIBUEA 2.HIRAS P.M.SIBUEA 3.LUNGGUK Y.SIBUEA 4.DESI P.SIBUEA 5.TEDDY P.M.SIBUEA 6.NOVITA S.SIBUEA 7.LEDY C SIBUEA 8.GOMGOM ALEXSANDRO SIBUEA

SIBUEA MARK QUARK HIGGS BOSON

Jika anda sia-siakan uang, maka anda hanya akan kehilangan uang. Tapi jika anda SIA-SIAKAN WAKTU, maka anda akan KEHILANGAN SEBAGIAN HIDUP anda.(If you do not waste your money, then you will only lose money. But if you are NOT WASTE TIME, then you will LOSE SOME LIFE you).

SIBUEA SCIENCE LEPTON GLUON TAO

Hal terpenting dalam kehidupan adalah mencintai apa yang Anda lakukan, karena itu satu-satunya cara agar Anda mencapai hasil yang sangat baik dalam pekerjaan Anda.(The most important thing in life is to love what you do, because it's the only way for you to achieve excellent results in your work).

SIBUEA MARGAKU MARPAUNG PARIBANKU

Jangan pernah menyerah karena apapun yang terjadi selalu ada jalan keluar. Kita dilahirkan bukan sebagai orang yang gagal tetapi seorang pemenang.(Do not ever give up because no matter what happens there is always a way out. We are born not as a failure but a winner).

SIBUEA WAYNE MARK ROONEY SIR ARTHUR EDDINGTON

Before God we are all equally wise - and equally foolish (Dihadapan Tuhan kita semua setara bijaksananya dan setara bodohnya).

SIBUEA FIND SUCCESS BUT NOT PERFECTION

Hanya mereka yang berani gagal dapat meraih keberhasilan. Keberhasilan tidak diukur dengan apa yang anda raih, namun kegagalan yang telah anda hadapi, dan keberanian yang membuat anda tetap berjuang.(Only those who dare to fail to achieve success. Success is not measured by what you accomplish, but the failures you have faced, and the courage that keeps you fighting).

Selasa, 29 Oktober 2013

Kehematan Penggunaan Nuklir ada pada Daur Ulang Bahan Bakar " SIKLUS BAHAN BAKAR NUKLIR"

Uranium merupakan sumber energi dengan kelimpahan sungguh sangat besar, yaitu 13000 TW tahun. Sebagai perbandingan, kelimpahan energi dari batubara adalah 680 TW tahun. Sedangkan kelimpahan energi dari minyak dan gas  adalah 400 TW tahun. Adapun komsumsi energi dunia pada tahun 2000 adalah 14 TW tahun, dan pada tahun 2100 diproyeksikan sekitar 55 TW tahun. (TW adalah singkatan dari terrawatt, dan 1 TW = 1.000.000.000.000 W).
Uranium di kerak bumi terdeposit bersama-sama dengan mineral lainnya. Agar dapat menghasilkan energi yang efisien, uranium harus diolah melalui serangkaian tahapan proses yang panjang dan komplek dibanding pemrosesan bahan bakar fosil seperti batubara, minyak, dan gas. Meskipun demikian, porsi ongkos bahan bakar nuklir terhadap ongkos total pembangkitan listrik dari PLTN  adalah realtif kecil, yaitu sekitar 20 %.

Tahapan dimulai dari penambangan dan penggilingan bijih uranium untuk mendapatkan konsentrat uranium. Tahapan proses selanjutnya adalah pemurnian dan konversi, pengkayaan atau peningkatan kadar U-235 dalam uranium, dan fabrikasi perangkat bakar nuklir sesuai dengan jenis reaktornya.
Seluruh tahapan mulai dari penambangan hingga fabrikasi perangkat bakar disebutsebagai ujung depanatau “front end” siklus bahan bakar nuklir.
Gambar : Siklus Bahan Bakar Nuklir
Bahan bakar uranium yang telah habis masa gunanya dalam membangkitan energidisebut bahan bakar bekas atau ”spent fuel” yang akan melalui beberapa tahapan pengelolaan setelah dikeluarkan dari teras reaktor. Masa guna bahan bakar nuklir di reaktor antara 3 – 6 tahun.
Pengelolaan bahan bakar bekas meliputi: penyimpanan sementara, proses olah ulang dan daur ulang, dan pada akhirnya ditangani sebagai limbah aktivitas tinggi. Tahapan ini disebut sebagai ujung belakangatau “back end” siklus bahan bakar nuklir.

Proses olah ulang dan daur ulang bahan bakar nuklir bekas merupakan sebuah opsi. Siklus bahan bakar nuklir yang tidak menerapkan proses olah ulang dan daur ulang pada ujung belakang disebut siklus bahan bakar terbuka atau ”open fuel cycle”. Sedangkan siklus bahan bakar nuklir yang menerapkan proses olah ulang dan daur ulang bahan bakar bekas disebut siklus bahan bakar tertutup atau ”closed fuel cycle”.

Siklus bahan bakar nuklir tertutup melalui daur ulang bahan bakar bekas tanpa melalui proses pemisahan plutonium telah menjadi pilihan utama pengembangan sistem energi nuklir di masa depan.

1.  Penambangan dan Penggilingan
Uranium dapat ditambang melalui teknik terbuka (open cut) maupun teknik terowongan (underground) tergantung pada kedalaman batuan uranium yang diketemukan. Sebagai contoh tambang uranium Ranger adalah tambang terbuka sementara Olympic Dam merupakan tambang bawah tanah (tambang ini juga memproduksi tembaga, emas dan perak). Kedua tambang uranium tersebut berada di Australia yang merupakan negara dengan cadangan uranium kategori murah terbesar di dunia.

Bijih uranium hasil penambangan selanjutnya dikirim ke pabrik pengolah bijih  yang umumnya berada di dekat tambang. Di pabrik ini, bijih uranium dihancurkan secara mekanik, dan kemudian uranium dipisahkan dari mineral lainnya melalui proses kimia menggunakan larutan asam sulfat. Hasil akhir dari proses ini berupa konsentrat uranium oksida (U3O8) yang sering disebut kue kuning atau “Yellow Cake”, meskipun dalam banyak hal berwarna kecoklatan.

Beberapa tambang uranium di Australia, Amerika Serikat, dan Kazakhstan menggunakan In Situ Leaching (ISL) untuk mengkstrak uranium secara langsung dari batuan di dalam tanah dan membawanya ke permukaan dalam bentuk larutan kaya uranium, yang kemudian diendapkan dan dikeringkan menjadi padatan uranium oksida. Teknik ini terutama digunakan untuk mengekstrak uranium yang terdapat dalam batuan di dalam tanah yang tidak ekonomis apabila delakukan dengan teknik konvensional.

U3O8merupakan produk komersial yang diperjual-belikan di pasar dunia. Sepuluh negara utama pemroduksi uranium adalah Kanada, Australia, Kazakhstan, Nigeria, Rusia, Namibia, Afrika Selatan, Ukraina, Amerika Serikat, dan Uzbekistan. Kanada dan Australia memproduksi uranium hampir 50% dari total produksi dunia.
Secara kasar, dibutuhkan sekitar 200 ton uranium agar sebuah reaktor daya 1000 MWe mampu beroperasi selama 1 tahun. Saat ini permintaan dunia akan uranium relatif stabil, yaitu sekitar 65000 ton/tahun.

2.  Konversi

Tahapan selanjutnya untuk pembuatan bahan bakar nuklir adalah proses pemurnian dan konversi Yellow Cake menjadi serbuk uranium dioksida (UO2) berderajat nuklir. UOini kemudian dikonversi lagi ke dalam bentuk gas uranium hexafluoride (UF6).

Untuk reaktor nuklir yang menggunakan bahan bakar uranium alam, yaitu reaktor yang mampu menghasilkan reaksi fisi berantai dengan bahan bakar uranium alam yang hanya mengandung 0,7%  U-235, serbuk UO2 hasil konversi Yellow Cake dapat langsung dikirim ke pabrik bahan bakar nuklir untuk diproses menjadi perangkat bakar nuklir yang siap digunakan di dalam reaktor.

Sedangkan untuk reaktor nuklir yang hanya mampu menghasilkan reaksi fisi berantai dengan bahan bakar uranium diperkaya, serbuk UO2 hasil proses konversi Yellow Cake perlu diubah ke bentuk gas UF6 sebagai umpan proses pengayaan (proses peningkatan kadar U-235 dalam bahan bakar uranium).
Konversi UO2 menjadi UF6 dilakukan dalam dua langkah proses. Pertama adalah mereaksikan UOdengan asam anhydrous HF  hingga menjadi uranium tetrafluorida (UF4). Kemudian UF4direaksikan dengan gas F2 sehingga terbentuk UF6.
    
Negara utama pengoperasi pabrik komersial konversi Yellow Cake – UF6adalah Kanada, Perancis, Amerika Serikat, Inggris, dan Rusia. Beberapa negara seperti Cina, India, Aragentina, dan Romania juga mengoperasikan pabrik konversi tetapi hanya sebatas untuk memenuhi kebutuhan dalam negrinya sendiri.

3.  Pengkayaan

Mayoritas PLTN yang sekarang beroperasi maupun yang sedang dalam konstruksi memerlukan uranium diperkaya sebagai bahan bakarnya. Pengkayaan uranium adalah proses meningkatkan kadar U-235 dalam bahan bakar uranium dari 0,7% (kadar U-235 dalam uranium alam) menjadi sekitar 3 – 5%  atau lebih.

Proses pengkayaan membuang sekitar 85%  U-238 melalui proses pemisahan gas UFke dalam dua aliran, yaitu satu aliran merupakan uranium yang telah diperkaya dan akan dipergunakan umpan proses fabrikasi bahan bakar. Sedangkan aliran lainnya adalah aliran buangan atau”tailing” berupa aliran uranium miskin U-235 yang disebut sebagai uranium deplesi (kadar U-235 kurang dari 0,25%).
Ada  dua metode yang secara komersial digunakan untuk proses pengkayaan uranium, yaitu metode difusi gas dan metode sentrifugasi gas. Kedua metode ini pada dasarnya menggunakan prinsip yang sama, yaitu beda berat antara atom U-238 dan atom U-235.

Pada pengayaan metode difusi, gas UF6dialirkan ke membran berpori. Oleh karena lebih ringan maka atom U-235 akan berdifusi atau bergerak lebih cepat dibanding atom U-238, sehingga gas UFyang lolos membran akan mengandung U-235 lebih banyak. Untuk mencapai tingkat pengayaan U-235 antara  3–5%, diperlukan sekitar 1400 kali pengulangan proses. Sehingga metode ini sangat boros energi, kira-kira akan mengkonsumsi 3–4 % dari energi listrik yang dibangkitkannya.
Pada pengayaan metode sentrifugasi, gas UF6diputar dengan kecepatan sudut tinggi dalam sebuah tabung panjang dan ramping (1–2 m panjang, 15-20 cm diameter). Gaya sentrifugal akan melemparkan isotop U-238 yang lebih berat menjauh dari pusat rotasi, sedangkan isotop U-235 yang lebih ringan akan terkonsentrasi di pusat rotasi.

Metode gas sentrifugasi lebih hemat energi dan dapat dibangun dengan unit yang lebih kecil dibanding metode difusi gas, sehingga metode ini lebih ekonomis dan secara komersial cepat berkembang.
Pabrik pengkayaan uranium di dunia pertama kali dibangun di Amerika Serikat dengan metode difusi gas. Beberapa pabrik pengkayaan modern yang berada di Eropa (Perancis, Inggris, Jerman, Belanda) dan Rusia menggunakan metode gas sentrifugasi. Negara lain yang mengoperasikan pabrik pengkayaan uranium komersial adalah Jepang, Cina, Argentina, dan Brazil.

Beberapa tipe PLTN, terutama PLTN Candu di Kanada dan PLTN generasi awal dengan reaktor berpendingin gas di Inggris tidak memerlukan bahan bakar uranium diperkaya.

4.  Fabrikasi Bahan Bakar

Fabrikasi bahan bakar atau perangkat bakar nuklir diawali dengan proses konversi UF6yang telah diperkaya (keluaran pabrik pengayaan) menjadi serbuk uranium dioksida (UO2) yang kemudian dibentuk menjadi pil-pil (pelet) silinder melalui pengepresan dan diteruskan dengan pemanggangan dalam suasana gas hidrogen pada temperatur tinggi (1700 oC) hingga membetuk pelet UO2berderajat keramik yang rapat dan kuat.

Pelet-pelet UO2yang memenuhi persyaratan kualitas kemudian dimasukkan ke dalam sebuah selongsong dari bahan paduan zirconium (zircalloy).
Setelah kedua ujung selongsong ditutup dan dilas, batang bahan bakar (fuel rod) disusun membentuk suatu perangkat bakar (fuel assembly).

Teras PWR 1000 MWe berisi sekitar 160 perangkat bakar. Total  batang bahan bakar yang digunakan mencapai 42000 buah. Setiap batang bahan bakar kira-kira berisi 300 – 370 pelet UOyang masing-masing pelet beratnya 6 – 7 gram.

Pabrik perangkat bakar PWR terbesar di dunia antara lain adalah Westinghouse – USA dengan kapasitas produksi 1600 ton/tahun, Global Nuclear Fuel – Americas dengan kapasitas produksi 1200 ton/tahun, Ulba – Kazakhstan dengan kapasitas produksi 2000 ton/tahun, TVEL Elektrosal – Rusia dengan kapasitas produksi 1020 ton/tahun, TVEL Novosibirsk – Rusia dengan kapasitas produksi 1000 ton/tahun, dan FBFC – Perancis dengan kapasitas produksi 820 ton/tahun.
Negara lain pengoperasi PLTN yang juga memproduksi perangka bakar adalah Jepang, Korea Selatan, China, India, Argentina, Brazil, Inggis (UK), dll.

5.  Reaktor Nuklir

Setelah proses fabrikasi, perangkat bakar nuklir di masukkan ke dalam teras reaktor. Susunan perangkat bakar (fuel assembly) inilah yang membentuk struktur inti atau teras reaktor (reactor core). PLTN tipe PWR dengan daya 1000 MW listrik (MWe) berisi sekitar 75 ton uranium sedikit diperkaya.

Dalam teras reaktor, U-235 mengalami reaksi fisi dan menghasilkan panas dalam sebuah proses berkesinambungan yang disebut reaksi fisi berantai. Kelangsungan proses ini sangat bergantung pada moderator seperti air atau grafit, dan sepenuhnya dikendalikan dengan menggunakan batang kendali.
Di dalam teras reaktor, sejumlah U-238 akan menyerap neutron hasil reaksi fisi dan berubah menjadi plutonium (Pu-239).

Setengah dari plutonium yang dihasilkan juga mengalami reaksi fisi dan menghasilkan sepertiga dari energi total reaktor.
Untuk mempertahankan kinerja reaktor, sekitar sepertiga dari bahan bakar yang  digunakan di dalam teras harus diganti dengan bahan bakar baru setiap satu tahun atau setiap 18 bulan.

6.  Penyimpanan Sementara Bahan Bakar Bekas

Bahan bakar bekas sangat radioaktif serta  mengeluarkan banyak panas. Untuk penanganan yang aman dan selamat, bahan bakar bekas  yang baru dikelurakan dari reaktor disimpan dalam kolam khusus yang berada di dekat reaktor untuk menurunkan panas maupun radioaktivitas. Air di dalam kolam berfungsi sebagai penghalang terhadap radiasi dan pemindah panas dari baban bakar bekas.
Bahan bakar bekas dapat disimpan di kolam penyimpanan untuk waktu yang lama (sampai lima puluh tahun atau lebih), sebelum akhirnya diolah ulang atau dikirim ke pembuangan akhir sebagai limbah (penyimpanan lestari).

Alternatif lain, setelah tingkat radioaktivitas dan pemancaran panas bahan bakar bekas menurun drastis, bahan bakar bekas dapat dikeluarkan dari kolam penyimpanan dan selanjutnya disimpan dengan cara kering. Perisai radiasi yang cukup murah dan pendinginan alamiah yang bebas perawatan, menjadikan cara ini menjadi pilihan yang menarik.  

7.  Reprocessing (Olah Ulang)

Bahan bakar bekas masih mengandung sekitar 96%  (480 kg) uranium dengan kandungan bahan fisil U-235 kurang dari 1%. Kemudian 3%  (15 kg) dari bahan bakar bekas berupa produk fisi yang dapat dikategorikan sebagai limbah aktivitas tinggi, dan 1%  (5 kg) sisanya berupa plutonium (Pu) yang diproduksi selama bahan bakar berada di dalam reaktor dan tidak mengalami pembakaran.

Pemisahan uranium dan plutonium dari produk fisi dilakukan dengan memotong elemen bakar kemudian melarutkannya ke dalam asam. Uranium yang didapat dari proses pemisahan ini bisa dikonversi kembali menjadi uranium hexaflourida untuk kemudian dilakukan pengkayaan. Adapun plutonium yang diperoleh dapat dicampur dengan uranium diperkaya untuk menghasilkan bahan bakar MOX (Mixed Oxide).

Pabrik bahan bakar MOX komersial yang ada di dunia adalah Belgia, Perancis, Jerman, Inggris, Rusia, Jepang, Cina, dan India. Amerika Serikat tidak melakukan olah-ulang terhadap bahan bakar bekas PLTN komersial yang ada di negaranya. Hingga saat ini Amerika Serikat menganut sistem daur terbuka atau ”open cycle”.

Beberapa PLTN PWR di dunia khususnya di Eropa telah menggunakan bahan bakar MOX ini walaupun sifatnya masih parsial, yaitu 20 - 30%  dari bahan bakar yang ada di teras.  Jepang dalam waktu dekat ini berencana untuk memuati sepertiga dari 54 PLTN-nya dengan bahan bakar MOX.
Adapun 3%  limbah radioaktif tinggi yang dihasilkan dari proses olah ulang adalah  produk fisi yang jumlahnya sekitar 750 kg pertahun dari reaktor daya 1000 MWe. Limbah ini mula-mula disimpan dalam bentuk cairan untuk kemudian dipadatkan.
Proses olah ulang bahan bakar bekas dilakukan di fasilitas di Eropa dan Rusia dengan kapasitas 5000 ton per tahun, dan total produksi selama hampir 40 tahun telah mencapai sekitar 90000 ton.

8.  Vitrifikasi

Limbah radioaktivitas tinggi dari proses olah ulang dapat dikalsinasi (dipanaskan pada suhu yang sangat tinggi) sehingga menjadi serbuk kering yang kemudian di masukkan kedalam borosilikat (pyrex) untuk immobilisasi limbah. Bahan gelas tersebut kemudian dituangkan ke dalam tabung stainless steel, masing-masing sebanyak 400 kg limbah gelas.

Pengoperasiaan reaktor 1000 MWe selama satu tahun akan menghasilkan limbah gelas tersebut sebanyak 5 ton atau sekitar 12 tabung stainless setinggi 1,3 meter dan berdiameter 0,4 meter. Setelah diberi pelindung radiasi yang sesuai, limbah yang sudah diproses ini kemudian diangkut ke tempat penyimpanan limbah.

Hingga saat ini, siklus bahan bakar nuklir bagian ujung belakang atau ”back end” hanya sampai pada tahap ini.
Pembuangan akhir dari limbah radioaktifitas tinggi atau pembuangan akhir bahan bakar bekas yang tidak diolah ulang (siklus terbuka), masih belum dilakukan.

9.  Pembuangan  Akhir Limbah

Pembuangan akhir limbah pada prinsipnya adalah penyimpanan lestari limbah radioaktivitas tinggi yang telah digelasifikasi dan disegel dalam tabung stainless steel, dan juga penyimpanan lestari bahan bakar bekas yang telah melalui proses pendinginan yang cukup dan telah disegel dalam wadah atau “canister” terbuat dari logam tahan korosi seperti tembaga atau stainless steel.

Secara umum telah dapat diterima bahwa limbah-limbah tersebut rencananya akan dikubur di batuan stabil di dalam tanah dengan kedalaman tak kurang dari 500 m di batuan dasar (bed rock). Kebanyakan negara merencanakan untuk melaksanakan penyimpanan lestari bahan bakar bekas setelah tahun 2010.(Sibuea Mark Quark Hadron's Referensi : infonuklir)

"Pengaruh Radiasi Terhadap Manusia"

Haiii Guyysss...kali ini penulis punya sajian istimewa untuk para readers,Hari ini penulis akan membahas tentang radiasi yang sangat identik membahayakan dipikiran kita....

Sel dalam tubuh manusia terdiri dari sel genetik dan sel somatik. Sel genetic adalah sel telur pada perempuan dan sel sperma pada laki-laki, sedangkan sel somatic adalah sel-sel lainnya yang ada dalam tubuh. Berdasarkan jenis sel, maka efek radiasi dapat dibedakan atas efek genetik dan efek somatik. Efek genetik atau efek pewarisan adalah efek yang dirasakan oleh keturunan dari individu yang terkena paparan radiasi. Sebaliknya efek somatik adalah efek radiasi yang dirasakan oleh individu yang terpapar radiasi. 



Waktu yang dibutuhkan sampai terlihatnya gejala efek somatik sangat bervariasi sehingga dapat dibedakan atas efek segera dan efek tertunda. Efek segera adalah kerusakan yang secara klinik sudah dapat teramati pada individu dalam waktu singkat setelah individu tersebut terpapar radiasi, seperti epilasi (rontoknya rambut), eritema (memerahnya kulit), luka bakar dan penurunan jumlah sel darah. Kerusakan tersebut terlihat dalam waktu hari sampai mingguan pasca iradiasi. Sedangkan efek tertunda merupakan efek radiasi yang baru timbul setelah waktu yang lama (bulanan/tahunan) setelah terpapar radiasi, seperti katarak dan kanker. 



Bila ditinjau dari dosis radiasi (untuk kepentingan proteksi radiasi), efek radiasi dibedakan atas efek deterministik dan efek stokastik. Efek deterministik adalah efek yang disebabkan karena kematian sel akibat paparan radiasi, sedangkan efek stokastik adalah efek yang terjadi sebagai akibat paparan radiasi dengan dosis yang menyebabkan terjadinya perubahan pada sel. 



Efek Deterministi (efek non stokastik) Efek ini terjadi karena adanya proses kematian sel akibat paparan radiasi yang mengubah fungsi jaringan yang terkena radiasi. Efek ini dapat terjadi sebagai akibat dari paparan radiasi pada seluruh tubuh maupun lokal. Efek deterministik timbul bila dosis yang diterima di atas dosis ambang (threshold dose) dan umumnya timbul beberapa saat setelah terpapar radiasi. Tingkat keparahan efek deterministik akan meningkat bila dosis yang diterima lebih besar dari dosis ambang yang bervariasi bergantung pada jenis efek. Pada dosis lebih rendah dan mendekati dosis ambang, kemungkinan terjadinya efek deterministik dengan demikian adalah nol. Sedangkan di atas dosis ambang, peluang terjadinya efek ini menjadi 100%. 



Efek Stokastik Dosis radiasi serendah apapun selalu terdapat kemungkinan untuk menimbulkan perubahan pada sistem biologik, baik pada tingkat molekul maupun sel. Dengan demikian radiasi dapat pula tidak membunuh sel tetapi mengubah sel Sel yang mengalami modifikasi atau sel yang berubah ini mempunyai peluang untuk lolos dari sistem pertahanan tubuh yang berusaha untuk menghilangkan sel seperti ini. Semua akibat proses modifikasi atau transformasi sel ini disebut efek stokastik yang terjadi secara acak. Efek stokastik terjadi tanpa ada dosis ambang dan baru akan muncul setelah masa laten yang lama. Semakin besar dosis paparan, semakin besar peluang terjadinya efek stokastik, sedangkan tingkat keparahannya tidak ditentukan oleh jumlah dosis yang diterima. Bila sel yang mengalami perubahan adalah sel genetik, maka sifat-sifat sel yang baru tersebut akan diwariskan kepada turunannya sehingga timbul efek genetik atau pewarisan. Apabila sel ini adalah sel somatik maka sel-sel tersebut dalam jangka waktu yang relatif lama, ditambah dengan pengaruh dari bahan-bahan yang bersifat toksik lainnya, akan tumbuh dan berkembang menjadi jaringan ganas atau kanker. Paparan radiasi dosis rendah dapat menigkatkan resiko kanker dan efek pewarisan yang secara statistik dapat dideteksi pada suatu populasi, namun tidak secara serta merta terkait dengan paparan individu. 
(Sibuea Maark Quark Hadron's)
Mohon tanggapan dan Komentar


"Mengenal Seputar PLTN"

Pembangkit Listrik Tenaga Nuklir atau PLTN adalah sebuah pembangkit daya thermal yang menggunakan satu atau beberapa reaktor nuklir sebagai sumber panasnya. Prinsip kerja sebuah PLTN hampir sama dengan sebuah Pembangkilt Listrik Tenaga Uap, menggunakan uap bertekanan tinggi untuk memutar turbin. Putaran turbin inlah yang diubah menjadi energi listrik. Perbedaannya ialah sumber panas yang digunakan untuk menghasilkan panas. Sebuah PLTN menggunakan Uranium sebagai sumber panasnya. Reaksi pembelahan (fisi) inti Uranium menghasilkan energi panas yang sangat besar.

Daya sebuah PLTN berkisar antara 40 Mwe sampai mencapai 2000 MWe, dan untuk PLTN yang dibangun pada tahun 2005 mempunyai sebaran daya dari 600 MWe sampai 1200 MWe. Sampai tahun 2006 terdapat 443 PLTN yang beroperasi di dunia, yang secara keseluruhan menghasilkan daya sekitar 1/6 dari energi listrik dunia.
Prinsip kerja PLTN sebenarnya mirip dengan pembangkit listrik lainnya, misalnya Pembangkit Listrik Tenaga Uap (PLTU). Uap bertekanan tinggi pada PLTU digunakan untuk memutar turbin. Tenaga gerak putar turbin ini kemudian diubah menjadi tenaga listrik dalam sebuah generator. 

Perbedaan PLTN dengan pembangkit lain terletak pada bahan bakar yang digunakan untuk menghasilkan uap, yaitu Uranium. Reaksi pembelahan (fisi) inti Uranium menghasilkan tenaga panas (termal) dalam jumlah yang sangat besar serta membebaskan 2 sampai 3 buah neutron.

Tugas utama keselamatan reaktor adalah mencegah terlepasnya zat-zat radioaktif ke lingkungan baik dalam keadaan operasi normal, gangguan maupun kecelakaan. Tugas ini dilakukan oleh sistem keselamatan raktor.

Filosofi keselamatan reaktor adalah “gagal selamat” artinya bila reaktor beroperasi tidak normal sistem keselamatan segera mematikan reaktor dan mengambil tindakan pengamanan secara otomatis. Tujuannya adalah elemen bakar selalu memperoleh pendinginan yang cukup sehingga integritasnya selalu terjaga dan pelepasan zat radioaktif terhindarkan. Oleh karena itu sistem keselamatan reaktor harus mempunyai keandalan yang tinggi. Dia harus berfungsi dalam setiap saat dan setiap keadaan termasuk keadaan bila terjadi bencana alam seperti gempa bumi.

Keandalan yang tinggi ini dicapai dengan jalan :
1.      Kontrol kualitas yang ketat setiap komponen reaktor dari pembuatan sampai pemasangan dengan pengesetan berulang-ulang dengan berbagai cara.
2.      Inspeksi kontinyu selama beroperasi
3.      Didesain dengan prinsip ganda yaitu diversiter dan redudan Diversiter artinya beberapa sistem yang berbeda tetapi mempunyai tugas yang sama. Redudan artiya perangkap sistem dan komponen
4.      Analisis keselamatan yang berisi tanggapan reaktor terhadap gangguan dan kecelakaan yang mungkin terjadi termasuk resikonya. Analisis ini harus menunjukkan bahwa reaktor hanya akan memberikan resiko dibawah batas yang diijinkan meskipun dalam keadaan kecelakaan.
Dalam teknologi reaktor dikenal istilah sistem keselamatan berlapis yaitu lapisan penghalang terlepasnya zat radioaktif ke lingkungan. Sebagai gambaran disajikan sistem penghalang pada suatu reaktor daya, yaitu:
§  Kristal bahan bakar
§  Kelongsong elemen bakar
§  Bejana tekan
§  Bejana keselamatan
§  Sistem penahan gas dan cairan aktif
§  Perisai biologis
§  Gedung reaktor
§  Sistem tekanan negatif

Bila prisisp-prisip keselamatan ini digunakan dalam pembangunan reaktor, niscaya keselamatan operasi reaktor akan terjamin. Untuk reaktor kecil seperti reaktor riset sistem keselamatannya tidak selengkap reaktor daya.
(Sibuea Mark Quark Hadron's)
Mohon komentar dan tanggapannya.

" Mengenal dan Memahami Reaktor Nuklir Lebih Dekat "


Reaktor nuklir adalah suatu alat untuk mengendalikan reaksi fisi berantai dan sekaligus menjaga kesinambungan reaksi itu. Reaktor nuklir ditetapkan sebagai "alat yang menggunakan materi nuklir sebagai bahan bakarnya Materi fisi yang digunakan sebagai bahan bakar misalnya uranium, plutonium dan lain-lain. Untuk uranium digunakan uranium alam atau uranium diperkaya. Jadi secara umum reaktor nuklir adalah tempat berlangsungnya reaksi nuklir yang terkendali. Untuk mengendalikan operasi dan menghentikannya digunakan bahan penyerap neutron yang disebut batang kendali. Jenis reaktor nuklir dibedakan berdasarkan besarnya energi kinetik neutron yang merupakan faktor utama dalam reaksi fisi berantai, yaitu reaktor neutron panas, reaktor neutron cepat dan lain-lain. Berdasarkan jenis materi yang digunakan sebagai moderator dan pendingin, reaktor diklasifikasikan menjadi reaktor air ringan, reaktor air berat, reaktor grafit dan lain-lain. Berdasarkan tujuannya, diklasifikasikan menjadi reaktor riset, reaktor uji material, reaktor daya dan lain-lain
Macam reaktor dibedakan berdasarkan kegunaan, tenaga neutron dan nama komponen serta parameter operasinya.
Menurut kegunaan:
§  Reaktor daya
§  Reaktor riset termasuk uji material dan latihan
§  Reaktor produksi isotop yang kadang-kadang digolongkan juga kedalam reaktor riset
Ditinjau dari tenaga neutron yang melangsungkan reaksi pembelahan, reaktor dibedakan menjadi:
§  Reaktor cepat: GCFBR, LMFBR, SCFBR
§  Reaktor thermal: PWR, BWR, PHWR, GCR.
Berdasarkan parameter yang lain dapat disebut:
§  Reaktor berreflektor grafit: GCR, AGCR
§  Reaktor berpendingin air ringan: PWR, BWR
§  Reaktor suhu tinggi: HTGR
Demikian seterusnya masih banyak terdapat nama atau jenis reaktor.
Reaktor fisi merupakan instalasi yang menghasilkan daya panas secara konstan dengan memanfaatkan reaksi fisi berantai. Istilah ini dibedakan dengan reaktor fusi yang memanfaatkan panas dari reaksi fusi. Dimungkinkan adanya reaktor yang memadukan kedua jenis tersebut (reaktor hibrid).
Reaktor fusi adalah suatu instalasi untuk mengubah energi yang terjadi pada reaksi fusi menjadi energi panas atau listrik yang mudah dimanfaatkan. Reaksi fusi merupakan reaksi penggabungan inti atom ringan, misalnya reaksi antara deuterium dan tritium. Deutrium sangat melimpah di alam, namun tritium tidak ada di alam ini. Oleh karena itu, bahan yang mengandung Li-6 digunakan sebagai selimut, selanjutnya direaksikan dengan neutron yang terjadi dari reaksi fusi untuk menghasilkan tritium, sehingga diperoleh siklus bahan bakar. Sistem reaktor fusi terdiri dari bagian plasma teras, selimut, bejana vakum, magnet superkonduktor, dan lain-lain. Dibandingkan dengan reaktor fisi, reaktor fusi tidak akan mengalami lepas kendali, dan sedikit menghasilkan produk radioaktif, sehingga memiliki tingkat keselamatan yang tinggi.
Reaktor riset/penelitian adalah suatu reaktor yang dimanfaatkan untuk berbagai macam tujuan penelitian. Misalnya reaktor uji material yang digunakan secara khusus untuk uji iradiasi, reaktor untuk eksperimen fisika reaktor, reaktor riset untuk penelitian dengan menggunakan berkas neutron dan alat eksperimen kekritisan, reaktor untuk pendidikan dan pelatihan. Di antara reaktor-reaktor tersebut, yang disebut reaktor riset pun terdiri dari berbagai macam, misalnya reaktor untuk eksperimen berkas neutron dan uji iradiasi material, reaktor untuk eksperimen perisai, reaktor untuk uji pulsa dan lain-lain. Tipe-tipe reaktor riset antara lain tipe kolam berpendingin dan bermoderator air berat, tipe kolam berpendingin dan bermoderator air ringan dan tipe kolam berpendingin air ringan dan bermoderator air berat.
Untuk dapat memngendalikan laju pembelahan, suatu reaktor nuklir harus didukug dengan beberapa fasilitas yang disebut sebagai KOMPONEN REAKTOR . komponen-komponen utama tersebut dapat diterangkan melalui diagram seperti terlihat pada gambar 1 berikut:
1.      Bahan bakar nuklir/bahan dapat belah
2.      Bahan moderator
3.      Pendingin reaktor
4.      Perangkat batang kendali
5.      Perangkat detektor
6.      Reflektor
7.      Perangkat bejana dan perisai reaktor
8.      Perangkat penukar panas


Komponen No. 1 s/d 6 berada pada suatu lokasi yang disebut sebagai teras reaktor, yaitu suatu tempat dimana reaksi berantai tersebut berlangsung.
Terdapat dua jenis bahan bakar nuklir yaitu BAHAN FISIL dan BAHAN FERTIL.
Bahan Fisil ialah : 
suatu unsur/atom yang langsung dapat memberikan reaksi pembelahan apabila dirinya menangkap neutron.
Contoh: 92U23392U23594PU23994PU241

Bahan Fertil ialah : 
suatu unsur /atom yang setelah menangkap neutron tidak dapat langsung membelah, tetapi membentuk bahan fisil.
Contoh: 90TH23292U238


Pada kenyataannya sebagian besar bahan bakar nuklir yang berada di alam adalah bahan fertil, sebaai contoh isotop Thorium di alam adalah 100% Th-232, sedangkan isotop Uranium hanya 0,7% saja yang merupakan bahan fisil (U-235), selebihnya sebesar 99,35 adalah bahan fertil (U-238).

Karena alasan fisis, elemen bakar suatu reaktor dibuat dengan kadar isotop fisilnya lebih besar dari kondisi alamnya, isotop yang demikian disebut sebagai isotop yang diperkaya, sedangkan sebaliknya untuk kadar isotop fisil yang lebih kecil dari kondisi alamnya disebut sebagai isotop yang susut kadar, biasanya ditemui pada elemen bakar bekas. Selain perubahan kadar bahan fisilnya, elemen bakar biasanya dibuat dalam bentuk oksida atau paduan logam dan bahkan pada dasa warsa terakhir ini sudah banyak dikembangkan dalam bentuk silisida. Contoh komposisi elemen bakar yang banyak dipakai: UO2, U3O8-Al, UzrH, U3Si2-Al dan lain-lain.

Tujuan utama dibuatnya campuran tersebut adalah agar diperoleh elemen bakar yang nilai bakarnya tinggi, titik lelehnya tinggi, penghantaran panasnya baik, tahan korosi, tidak mudah retak serta mampu menahan produk fisi yang terlepas
Dalam reaksi fisi, neutron yang dapat menyebabkan reaksi pembelahan adalah neutron thermal. Neutron tersebut memiliki energi sekitar 0,025 eV pada suhu 27oC. sementara neutron yang lahir dari reaksi pembelahan memiliki energi rata-rata 2 MeV, yang sangat jauh lebih besar dari energi thermalnya.

Syarat bahan moderator adalah atom dengan nomor massa kecil. Namun demikian syarat lain yang harus dipenuhi adalah: memiliki tampang lintang serapan neutron (keboleh-jadian menyerap neutron) yang kecil, memiliki tampang lintang hamburan yang besar dan memiliki daya hantara panas yang baik, serta tidak korosif.

Contoh bahan moderator : H2O, D2O (Grafit), Berilium (Be) dan lain-lain.
Pendingin reaktor berfungsi sebagai sarana pengambilan panas hasil fisi dari dalam elemen bakar untuk dipindahkan/dibuang ke tempat lain/lingkungan melalui perangkat penukar penukar panas (H.E.). Sesuai dengan fungsinya maka bahan yang baik sebagai pendingin adalah fluida yang koefisien perpindahan panasnya sangat bagus. Persyaratan lain yang harus dipenuhi agar tidak mengganggu kelancaran proses fisi pada elemen bakar adalah pendingin juga harus memiliki tampang lintan serapan neutron yang kecil, dan tampang lintang hamburan yang besar serta tidak korosif. Contoh fluida-fluida yang biasa dipakai sebagai pendingin adalah: H2O, D2O, Na cair. Gas He dan lain-lain.
Batang kendali berfungsi sebagai pengendali jalannya operasi reaktor agar laju pembelahan/populasi neutron di dalam teras reaktor dapat diatur sesuai dengan kondisi operasi yang dikehendaki. Selain hal tersebut, batang kendali juga berfungsi untuk memadamkan reaktor/menghentikan reaksi pembelahan. Sesuai dengan fungsinya, bahan batang kendali adalah material yang mempunyai tampang lintang serapan neutron yang sangat besar, dan tampang lintang hamburan yang kecil. Bahan-bahan yang sering dipakai adalah: Boron, cadmium, gadolinium dan lain-lain. Bahan-bahan tersebut biasanya dicampur dengan bahan lain agar diperoleh sifat yang tahan radiasi, titik leleh yang tinggi dan tidak korosif.

Prinsip kerja pengaturan operasi adalah dengan jalan memasukkan dan mengeluarkan batang kendali ke dan dari teras reaktor. Jika batang kendali dimasukkan, maka sebagian besar neutron akan tertangkap olehnya, yang berarti populasi neutron di dalam reaktor akan berkurang dan kemudian padam. Sebaliknya jika batang kendali dikeluarkan dari teras, maka populasi neutron akan bertambah, dan akan mencapai tingkat jumlah tertentu. Pertambahan/penurunan populasi neutron berkait langsung dengan perubahan daya reaktor.
Detektor adalah komponen penunjang yang mutlak diperlukan di dalam reaktor nuklir. Semua insformasi tentang kejadian fisis di dalam teras reaktor, yang meliputi popularitas neutron, laju pembelahan, suhu dan lain-lain hanya dapat dilihat melalui detektor yang dipasang dalam di dalam teras. Secara detail mengenai masalah tersebut akan dibicarakan dalam pelajaran instrumentasi reaktor.
Neutron yang keluar dari pembelahan bahan fisil, berjalan dengan kecepatan tinggi ke segala arah. Karena sifatnya yag tidak bermuatan listrik maka gerakannya bebas menembus medium dan tidak berkurang bila tidak menumbuk suatu inti atom medium. Karena sifat tersebut, sebagian neutron tersebut dapat lolos keluar teras reaktor, atau hilang dari sistem. Keadaan ini secara ekonomi berati kerugian, karena netron tersebut tidak dapat digunakan untuk proses fisi berikutnya.

Untuk mengurangi kejadian ini, maka sekeliling teras reaktor dipasang bahan pemantul neutron yang disebut reflektor, sehingga nutron-neutron yang lolos akan bertahan dan dikembalikan ke dalam teras untuk dimanfaatkan lagi pada proses fisi berikutnya.

Bahan-bahan reflektor yang baik adalah unsur-unsur yang mempunyai tampang lintang hamburan neutron yang besar, dan tampang lintang serapan yang sekecil mungkin serta tidak korosif. Bahan-bahan yang sering digunakan antara lain: Berilium, Grafit, Parafin, Air, D2O.
Bejana/tangki raktor berfungsi untuk menampung fluida pendingin agar teras reaktor selalu terendam di dalamnya. Bejana tersebut selain harus kuat menahan beban, maka harus pula tidak korosif bila berinteraksi dengan pendingin atau benda lain di dalam teras. Bahan yang bisa digunakan adalah: alumunium, dan stainless stell.

Perisai reaktor berfungsi untuk menahan/menghambat/menyerap radiasi yang lolos dari teras reaktor agar tidak menerobos keluar sistem reaktor. Karena reaktor adalah sumber radiasi yang sangat potensial, maka diperlukan suatu sistem perisai yang mampu menahan semua jenis radiasi tersebut pada umumnya perisai yang digunakan adalah lapisan beton berat.

Perangkat penukar panas (Heat exchanger) merupakan komponen penunjang yang berfungsi sebagai sarana pengalihan panas dari pendingin primer, yang menerima panas dari elemen bakar, untuk diberikan pada fluida pendingin yang lain (sekunder). Dengan sistem pengambilan panas tersebut maka integritas komponen teras akan selalu terjamin. 

Pada jenis reaktor tertentu, terutama jenis PLTN, H.E. juga berfungsi sebgai fasilitas pembangkit uap.
(Sibuea Mark Quark Hadron'S)

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites More